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Abstract
Mobile- and web-based psychological research are a valuable addition to the set of tools available for scientific study, reducing
logistical barriers for research participation and allowing the recruitment of larger and more diverse participant groups. However,
this comes at the cost of reduced control over the technology used by participants, which can introduce new sources of variability
into study results. In this study, we examined differences in measured performance on timed and untimed cognitive tests between
users of common digital devices in 59,587 (Study 1) and 3818 (Study 2) visitors to TestMyBrain.org, a web-based cognitive
testing platform. Controlling for age, gender, educational background, and cognitive performance on an untimed vocabulary test,
users of mobile devices, particularly Android smartphones, showed significantly slower performance on tests of reaction time
than users of laptop and desktop computers, suggesting that differences in device latency affect measured reaction times. Users of
devices that differ in user interface (e.g. screen size, mouse vs. touchscreen) also show significant differences (p < 0.001) in
measured performance on tests requiring fast reactions or fine motor movements. By quantifying the contribution of device
differences to measured cognitive performance in an online setting, we hope to improve the accuracy of mobile- and web-based
cognitive assessments, allowing these methods to be used more effectively.
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Introduction

Mobile- and web-based studies are a valuable addition to the
set of tools available for psychological research. Digital cog-
nitive assessments allow researchers to recruit participants on
a broader scale than would be possible in an individual lab, by
reducing logistical barriers such as travel to and from a re-
search lab, enabling larger sample sizes with no need for ad-
ditional recruitment efforts (Germine et al., 2012; Kraut et al.,
2004). Research using personal digital devices for

administering study measures has also proven to produce
more diverse participant groups than are used in most conven-
tional psychological research (Gosling & Mason, 2015).
Computer-based measures can also provide types of data that
traditional metrics do not, such as the time it takes participants
to respond to individual survey questions (Buchanan, 2007).
By allowing researchers to draw on a larger, more diverse, and
more representative sample of the general population and ob-
tain more precise data, online research using digital devices
could lead to increased scientific rigor in the fields of psychol-
ogy and cognitive science. In addition, making studies broadly
available online and through participants’ own devices makes
it easier for participants to learn about and engage with re-
search in psychology, opening up channels of communication
between researchers and the general public. Research partici-
pation can have significant educational benefits for those
learning about psychology; citizen science through online re-
search could make these benefits available to all (de Liaño
et al., 2012).

However, these benefits of research using personal digital
devices come at the cost of control over the setting in which
participants complete the study session (Nosek et al., 2002;
Reips, 2000). This loss of control is particularly significant in
relation to the specific technology used by study participants
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(Woods et al., 2015). While a lab-based study allows re-
searchers to provide any necessary digital devices and internet
connection (and thus ensure that they remain consistent be-
tween all participants), participants in online research can use
a wide variety of devices, including desktop and laptop com-
puters, smartphones, tablets, and e-readers (De Bruijne &
Wijnant, 2013). These devices can differ widely in hardware,
software, and user interface, introducing uncontrolled and un-
detected variation into the experimental procedure (Germine
et al., 2019; Woods et al., 2015), which may impact results.

One potential source of device variation that could affect
data in psychological research, and particularly research in-
volving reaction time, is device latency (Pavlovych&Gutwin,
2012). The latency of a device refers to the time necessary for
a user’s input (such as a mouse click or a touch on a
touchscreen) to be registered by the computer. While device
latencies for most commonly used technologies are short
enough to be unnoticeable for most users, they can have a
significant impact on time-dependent cognitive tests, such as
tests of reaction time. The average simple reaction time has
been shown to be in the range of 200–300 ms, with time
increasing with age (Jain et al., 2015; Wilkinson & Allison,
1989; Woods et al., 2015). Therefore, variation in device la-
tency, which usually ranges from 50 to 200 ms for
touchscreen devices and 15 to 35 ms for modern desktop
computers, has the potential to distort measured reaction
times, causing true inter-individual differences in performance
to be drowned out by increasing variation irrelevant to
neurocognitive ability (Henze et al., 2016; Pavlovych &
Gutwin, 2012). For example, some studies of the difference
in reaction time between schizophrenic and non-
schizophrenic subjects show differences of approximately
100 ms—small enough to be affected by the differences in
measurement caused by device latency (Ngan & Liddle,
2000). Thus, without a way to control for variations in device
latency, one cannot adapt reaction time research to an online
format without running the risk of conflating device variation
with actual variation in participant performance.

Measures of reaction time are a key instrument for research in
psychological science. Despite its simplicity, reaction time pro-
vides a robust measure of cognitive function; performance on
tests of simple reaction time (the time between the presentation
of a cue stimulus and the completion of a response) and related
tasks are correlated with a broad range of general intelligence
measures, including less time-dependent measures based on ar-
ithmetic and vocabulary knowledge (Luciano et al., 2003). In
addition, cognitive processing speed as measured by reaction
time may explain the relationship between general intelligence
and life outcomes; a study of 898 adults followed from ages 56 to
70 showed that the established relationship between general in-
telligence and all-causes mortality is no longer significant after
controlling for reaction time (Deary & Der, 2005). As a measure
of brain function, reaction time is associated with cognitive

impairment across disorders, including schizophrenia,
Parkinson’s disease, and traumatic brain injury (Evarts et al.,
1981; Hetherington et al., 1996; Ngan & Liddle, 2000).
Reaction time can also be used as a tool to study attitudes, as
in the Implicit Association Test, which measures differential as-
sociation of two target concepts with an attribute by comparing
the speed with which participants can pair each concept with the
attribute of interest (Greenwald et al., 1998; Nosek et al., 2005).
The information that can be obtained from reaction time is not
limited to measurements of speed; older adults and people with
cognitive impairments frequently show reaction times that are
not only slower than the population average, but also more var-
iable from trial to trial (Gorus et al., 2008; Hultsch et al., 2002).
Typical reaction times on a test of simple reaction time are ap-
proximately 200–300ms, so the 50–200ms of delay contributed
by device latency could be greater than the true variation between
individuals (Jain et al., 2015; Ngan&Liddle, 2000;Wilkinson&
Allison, 1989). The versatility of reaction time as a tool to pro-
vide insight into cognitive processes makes its accurate measure-
ment vital for a variety of fields of research.

Because tests of reaction time and other timed tasks that
take place on the scale of milliseconds are such vital tools in
psychological research, it is crucial that, in taking advantage
of the many benefits of digital cognitive assessment, we do not
lose the ability to measure cognition accurately. In this study
we use a large, diverse online sample to characterize the extent
to which variations between digital devices used by partici-
pants affect their scores on reaction time-based tests. Based on
our understanding of device latency, we predict that users of
different digital devices will show differences in observed
performance on cognitive tests based on reaction time. We
expect that some of these differences will be associated with
cognitive and demographic factors that vary with device
ownership—for example, tablet users tend to be older than
users of other devices. However, we expect that device-
related differences will persist after controlling for demo-
graphic and cognitive differences measured by device-robust
tasks (e.g. untimed tasks with simple stimuli). Because true
reaction times scale with the cognitive complexity of the task,
while device latencies do not, we expect that device-related
differences will be the largest (as a proportion of overall var-
iability) in tasks with short reaction times. In contrast, we
expect smaller relative contributions of device variability on
more complex tests that produce longer reaction times.
Finally, we suggest methods to reduce potential device-
related confounds.

Study 1: Differences in reaction time
by device

In Study 1, we analyzed existing data on cognitive test perfor-
mance and device characteristics from a large sample of
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visitors to TestMyBrain.org. We looked at each of the five
most frequently used classes of devices on timed and
untimed cognitive tests.

Methods

Participants

Study 1 was based on large samples of data collected across a
range of tasks from 2014 to 2019 through the TestMyBrain.
org platform. Our participants consisted of 59,587 volunteers
who visited TestMyBrain.org, a citizen science website that
allows people to participate in cognitive research studies in
exchange for individualized feedback on their performance
after each study. Data from TestMyBrain.org have been
shown to be of similarly high quality as data gathered in a
lab or clinic setting (Chaytor et al., 2020; Germine et al.,
2012) and replicate findings from traditional lab or clinical
settings (Hartshorne & Germine, 2015; Halberda et al.,
2012; Germine et al., 2011). Before starting a task, partici-
pants read a study information sheet and gave informed con-
sent. After completing the task, participants received feedback
on their results relative to other individuals who had complet-
ed the same test. Consent and study procedures were reviewed
by the Harvard Committee on the Use of Human Subjects.

Participants ranged in age from 18 to 80 years, with a mean
age of 35.92 years (SD = 15.23). The sample contained similar
numbers of male and female participants (48.56% male,
51.24% female, 0.20% non-binary/genderqueer). While the
TestMyBrain platform is open to participants in all parts of
the world, we limited our sample to participants who reported
speaking English as a native language since one of our mea-
sures assessed English vocabulary knowledge. Further infor-
mation on the demographic characteristics of the sample can
be found in Table 1.

This study included data from all participants who com-
pleted one or more of the simple reaction time, digit symbol
matching, or vocabulary (described below) tasks on
TestMyBrain. These tasks were all available for participants
to take through the online platforms for multiple periods of
time between 2014 and 2019. These three tests were chosen in
order to examine the effects of device latency and other device
variability on both short and long reaction times. The simple
reaction time task is intended to measure a participant’s fastest
possible response, while the digit symbol matching task is a
speeded task that produces longer reaction times. The vocab-
ulary test is not scored based on reaction time, and was in-
cluded in order to compare the effects of device differences on
timed and untimed tests. Participants whose devices could not
be identified from user agent strings were excluded from anal-
ysis. Of 59,587 participants who completed any of these tests
on an identifiable device, 30,747 completed simple reaction

time, 17,507 completed digit symbol matching, and 21,519
completed vocabulary.

Measures

Simple reaction time This simple reaction time test requires
participants to respond to a green square cue after a waiting
period indicated by a red square cue. They are asked to re-
spond by pressing the space bar or touching their touchscreen
as quickly as they can. The time between the two cues varies
between 700 and 1500 ms, with delays sampled based on an
exponential random distribution from this range. There is also
a consistent 700 ms delay between a participant’s response in
one trial and the presentation of the wait cue in the next trial.
Participants complete 30 trials. This task is a measure of basic
psychomotor response speed and has been used in previous
studies (McLean et al., 2019; Passell et al., 2019). Notably,
this task produces relatively short reaction times; the median
reaction time in our sample was 303.86 ms (SD = 68.94 ms).

Digit symbol matching The digit symbol matching task re-
quires participants to use a table of digit and symbol pairings
present on the bottom of the screen throughout the duration of
the task to indicate which of three numbers (1, 2, or 3) corre-
sponds to a symbol shown on screen. Symbols are simple
black and white icons. Each number is paired with three sym-
bols in the key, for nine pairings in total. The pairings of
symbols and digits remain consistent throughout the task.
Participants who use laptop or desktop computers with key-
boards respond by pressing the 1, 2, or 3 key on the keyboard,
while participants using touchscreen-based devices respond
by touching buttons on the screen labeled with the 3 digits.
After a participant responds to a trial, there is a 250 ms delay
before the next symbol is presented. This task was adapted
from the classic Wechsler Adult Intelligence Scale (WAIS)
digit symbol coding task (Drozdick et al., 2012) and adapted
for web/mobile administration. This task is a measure of pro-
cessing speed and short-term memory (Joy et al., 2004) and
has been used in previous studies as a measure of processing
speed across the lifespan (Hartshorne & Germine, 2015;
McLean et al., 2019). This task produces longer reaction times
than the simple reaction time task; the median reaction time on
this test in our sample was 1360.03 ms (SD = 354.68). To best
mimic the WAIS task, participants are given a time limit of 90
seconds to correctly answer as many trials as they can.

Vocabulary We used a 20-item test of English vocabulary,
with words increasing in difficulty over the course of the test.
In this test, the participant sees a word and has to select which
of five words is closest in meaning to the target word. This test
was included as a measure of cognitive ability that is not based
on differences in reaction time, and thus would be expected to
be relatively unaffected by device differences. This test has
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been used in previous studies as a measure of crystallized
cognitive ability across the lifespan (Hartshorne & Germine,
2015; McLean et al., 2019; Passell et al., 2019). Vocabulary
has been shown to correlate significantly, however, with per-
formance on tests of processing speed and with overall cog-
nitive performance (Luciano et al., 2004; Crawford, 1989).

Data analysis

All data analysis was performed in R (R Core Team, 2012). In
addition to base R functions, we used the effsize R package to
compute effect sizes and the uaparserjs R package to parse
user agent information in order to identify digital devices
(Rudis et al., 2016; Torchiano, 2019). We examined differ-
ences in reaction times by device group using linear mixed-
effects models. In these models, the reaction time on each trial
was treated as a continuous dependent variable and was scaled
to have a mean of 0 and a standard deviation of 1, with results
reported in standard deviation units. Participant ID and trial
number were treated as random effects (random intercepts),
allowing us to account for participants of different perfor-
mance levels and trials of different difficulty levels. Device
group, age (including quadratic and cubic effect of age), gen-
der, age-gender interaction, and educational background were
treated as fixed effects. Differences in vocabulary perfor-
mance by device group were examined using a logistic
mixed-effects model; accuracy on each trial was treated as a
categorical (correct/incorrect) dependent variable, with partic-
ipant ID and trial number treated as random effects and device
group, age (including quadratic and cubic effect of age), gen-
der, age-gender interaction, and educational background treat-
ed as fixed effects. In addition to these mixed-effects models,
we also fit linear regression models for participant-level per-
formance (median reaction time and vocabulary accuracy)

with age, gender, and educational background as covariates;
effect size was computed based on residuals from these
models using Cohen’s d.

To maintain data quality, we excluded participants whose
performance indicated that they were not completing the task
as intended. In reaction time tasks, we excluded individual trials
with impossibly short response times and instead imputed the
participant-level mean reaction time for those trials. The thresh-
old for trial-level exclusionswas set at 110ms for simple reaction
time and 600 ms for digit symbol matching. For simple reaction
time, this threshold was determined based on established physi-
ological limitations. For digit symbol matching, the threshold
was based on examination of reaction times where accuracy
consistently falls to chance level. We also excluded all trials in
which the participant did not make a response within the time
limit (2 seconds for simple reaction time; 10 seconds for digit
symbol matching). If a participant had more than 10% of their
reaction times outside of this range on simple reaction time (110–
2000ms) or digit symbol matching (600–10,000ms), their data
on the test in question were excluded from analysis. A total of
1175 participants (3.82%) had their simple reaction time data
removed, while 350 participants (2.00%) had their digit symbol
matching data removed. These exclusions were mostly due to
fast responding (94.8% of outlying trials for excluded simple
reaction time participants were below the minimum RT cutoff,
while 99.5% of outlying trials for excluded digit symbol
matching participants were below the minimum RT cutoff). In
addition, participants who chose the same response (e.g. repeat-
edly selecting 3) 90% of the time or more in digit symbol
matching had their data from this test excluded; of the partici-
pants who were not excluded for outlying reaction times, only
two additional participants (0.0001%) had their data excluded
based on this criterion. Vocabulary data were excluded if data
showed that a participant had completed more or less than the

Table 1 Study 1 participant characteristics and analysis sample sizes

Variable [range] Analysis N n (%) M (SD)

Age [18–80] 59,587 35.92 (15.23)

Gender 59,119

Male 28,709 (48.56)

Female 30,291 (51.24)

Non-binary/Genderqueer 179 (0.20)

Education* 46,701

Primary school 10 (0.02)

Middle school 482 (1.03)

High school 6024 (12.90)

Some college 13,291 (28.46)

Technical training/associate’s degree 347 (0.74)

Bachelor’s degree 13,969 (29.91)

Graduate school 12,578 (26.93)

*Self-reported highest level of education completed
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expected 20 trials, since this was an indicator of a technical
problem or participant error (e.g., reloading the page or returning
to previous pages during the test). A total of 198 participants had
vocabulary data removed based on this criterion.

Results

Effect of demographic differences in device use

The participant groups that completed tests on each device
differed from one another in demographic characteristics as
well as cognitive test performance (see Table 2). A one-way
analysis of variance (ANOVA) showed a significant relation-
ship between device choice and age (F(4, 59,582) = 499.3,
p < 0.001, η2 = 0.03); users of Macintosh, iPhone, and
Android devices were younger, on average, than users of
Windows devices, while users of iPad tablets had a higher
average age than all other groups (see Table 2 for mean age
of each group). A Games-Howell post hoc test showed that
differences between all groups were significant. Device
groups also differed by gender, with users of mobile devices
and Macintosh laptop/desktop devices more likely to be fe-
male than users of Windows devices (see Table 2 for gender
distribution of each device group). A chi-square test of inde-
pendence showed that these differences were significant
(X2(8) = 995.43, p < 0.001, standardized mean difference ef-
fect size = 0.26); standardized residuals can be seen in Table 3.
A one-way ANOVA also showed significant differences in
educational background between different device groups
(F(4, 46,696) = 268, p < 0.001, η2 = 0.02); users of
Macintosh devices had completed the most years of education
on average and users of Android devices had completed the
fewest (see Table 3 for educational background of each device
group). Running a Games-Howell post hoc test, we found that
differences between all groups were significant.

Age, gender, and educational background are known to pre-
dict performance on both timed and untimed cognitive tests.
Previous research has shown that reaction time typically becomes
slower over the course of the adult lifespan (Dykiert et al., 2012;

Der & Deary, 2006). This is consistent with what we found in
our data, which showed a significant positive correlation between
age and latency in simple reaction time (r = 0.25, 95% CI [0.24,
0.26], p< 0.001). There is also evidence of gender differences in
reaction time, withmale participants showing faster reaction time
on average (Dykiert et al., 2012); this pattern was also demon-
strated in our simple reaction data (t = −27.06, p< 0.001). Thus,
differences in observed performance between users of different
devices could reflect differences in the demographic characteris-
tics of people who choose each device, as well as the effects of
the devices themselves. For this reason, we looked at the associ-
ation between device type and cognitive test performance before
and after controlling for age and gender.

Differences in performance by device

Mixed-effects linear regression models (Windows used as
comparison group) showed that device type was associated
with reaction time on both simple reaction time and digit sym-
bol matching after controlling for age, gender, and educational
attainment. This effect is greatest on simple reaction time, with
Android, iPhone, and iPad devices showing longer reaction
times than Windows devices (Android: β = 0.56, SE = 0.01,
t = 53.07, p < 0.001; iPhone: β = 0.21, SE = 0.01, t = 17.34,
p < 0.001; iPad: β = 0.23, SE = 0.01, t = 16.02, p < 0.001)
and Macintosh laptop/desktop devices showing slightly
shorter reaction times than Windows devices (β = −0.07,
SE = 0.01, t = −7.20, p < 0.001). In the digit symbol matching
test data, reaction times from users of Android and iPhone
devices were significantly longer than those from users of
Windows devices (Android: β = 0.13, SE = 0.01, t = 9.45,
p < 0.001; iPhone: 0.09, SE = 0.01, t = 5.81, p < 0.001), while
Macintosh users showed slightly shorter reaction times (β =
−0.07, SE = 0.01, t = −6.45, p < 0.001). iPad users did not
show significant differences in reaction time from Windows
users (β = −0.02, SE = 0.02, t = −1.18, p = 0.24). On the
untimed vocabulary test, mixed-effects logistic regression (al-
so controlling for age, gender, and educational attainment)
showed that use of Macintosh laptop and desktop devices

Table 2 Demographic differences in device use*

Device** N Mean age (SD) Percent female Mean years of education (SD)

Android 6593 33.23 (13.17) 55.01 14.72 (2.18)

iPhone 4678 31.99 (11.96) 61.39 15.01 (2.15)

iPad 3456 45.60 (15.85) 62.41 15.52 (2.21)

Macintosh 10,779 35.40 (15.40) 56.61 15.86 (1.96)

Windows 34,081 36.17 (15.45) 45.58 15.32 (2.14)

*Demographic statistics were computed based only on participants who successfully completed all tests and whose data were not removed for quality
control

**Android devices include both mobile phones and tablets; Windows devices include tablet, laptop, and desktop computers
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was associated with correct responses compared to Windows
devices (β = 0.30, SE = 0.03, z = 11.61, p < 0.001), while use
of Android devices was associated with incorrect responses
(β = −0.33, SE = 0.05, z = −7.06, p < 0.001); other devices
did not show a significant association with accuracy
(iPhone: β = −0.10, SE = 0.06, z = −1.84, p = 0.07; iPad:
β = −0.01, SE = 0.05, z = −0.26, p = 0.87). The fact that dif-
ferences persist for both timed test performance and vocabu-
lary performance after controlling for age, gender, and educa-
tion suggests that some of these differences may be due to
some additional differences (other than age, gender, and edu-
cation) in the makeup of the participant groups that use each
device, rather than a consequence of differences in the devices
alone. The full distribution of age-, education-, and gender-
controlled test performance for each device group can be seen
in Fig. 1. (see Table 4 for mean scores of each device group).

Study 2: Differences in reaction time
by device, controlling for general cognitive
ability

Study 1 indicated that there were differences in cognitive test
performance between users of different devices. However, we
also found differences in cognitive test performance on a test

of vocabulary knowledge, where contributions of software/
hardware characteristics should be minimal. Thus, it is possi-
ble that differences in reaction time measurement by device
are related to differences in cognitive ability that vary with
device ownership. In the next study, we recruited a group of
participants to complete a larger set of timed tests and an
untimed test of vocabulary knowledge, allowing us to exam-
ine how device differences differentially affect performance
within the same participant, after controlling for device-
insensitive differences in general cognitive ability (as mea-
sured by vocabulary). We also collected additional device
information to be able to better distinguish between Android
and Windows tablets and smartphones.

Methods

Participants

Participants consisted of 3818 volunteers who visited
TestMyBrain.org over a period of 6 months in 2018. All
tests completed by a single participant were completed over
the course of a single session, ensuring that each set of tests
associated with one participant were completed using a
consistent device. Participants ranged in age from 18 to 80
years, with a mean age of 35.44 years (SD = 15.96). The

Table 4 Participant-level performance by device across tasks

Mean (SD) participant performance for frequently used device groups

Device* Simple RT (ms) DSM** RT (ms) Vocabulary accuracy (%)

Android 374.53 (75.13) 1494.44 (333.16) 63.79 (20.77)

iPhone 326.05 (56.34) 1418.30 (290.67) 67.23 (19.35)

iPad 346.94 (66.84) 1522.89 (335.70) 77.65 (17.78)

Macintosh 293.65 (48.97) 1342.29 (302.33) 77.81 (17.65)

Windows 304.44 (64.07) 1407.71 (377.70) 71.66 (21.16)

Effect size (95% CI) of device differences on test performance (Cohen’s d,Windows device as comparison group, controlled for age, gender, and
educational attainment)

Android 1.12 (1.08, 1.16) 0.27 (0.21, 0.33) −0.28 (−0.35, −0.21)
iPhone 0.44 (0.39, 0.48) 0.17 (0.10, 0.23) −0.08 (−0.16, 0.00)
iPad 0.53 (0.47, 0.59) −0.03 (−0.10, 0.04) 0.00 (−0.08, 0.07)
Macintosh −0.11 (−0.15, −0.08) −0.12 (−0.17, −0.08) 0.23 (0.19, 0.27)

*Android devices include both mobile phones and tablets; Windows devices include tablet, laptop, and desktop computers. For all measures, lower
values indicate better performance

**Digit symbol matching test

Table 3 Standardized residuals from chi-square test of independence of gender and device

Windows Android iPad iPhone Macintosh

Female −29.75 7.14 14.00 15.08 13.37

Non-binary/genderqueer −3.35 2.29 1.60 2.61 −0.36
Male 30.05 −7.35 −14.15 −15.32 −13.34
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sample contained similar numbers of male and female
participants (46.10% male, 51.70% female, 2.20% non-
binary/genderqueer). While the TestMyBrain platform is
open to participants in all parts of the world, we limited our
sample to participants who reported speaking English as a
native language. A total of 3515 participants completed the
simple reaction time test, 3350 participants completed the
digit symbol matching, 3259 completed the vocabulary test,
1997 completed part A of the trail-making task, and 1731
completed part B of the trail-making task (all tests have <
3818 completions due to partial battery completions in an
online setting). Further information on the demographic char-
acteristics of the sample can be found in Table 5.

Measures

For Study 2, participants completed a battery of tests including
simple reaction time, digit symbol matching, and vocabulary.
In addition, to look at potential effects of screen size on cog-
nitive test performance, we included a digital trail-making task
in a subset of later participants (N= 1997, parts A and B)
(Bowie&Harvey, 2006; Reitan, 1958). The trail-making task,
commonly used in neuropsychological assessment, requires
participants to connect a series of points in a predetermined
order as quickly as possible. In part A, the points are

numbered and must be connected in numerical order (i.e.
connecting point 1 to point 2, point 2 to point 3, etc.). In part
B, some points are numbered while others are given letter
labels, and participants must alternate numbered and letter-
labeled points while maintaining numerical and alphabetical
order (i.e. connecting point 1 to point A, point A to point 2,
point 2 to point B, etc.). This task measures processing speed
(parts A and B) and cognitive flexibility (part B). This test is
scored based on the speed with which items are connected; the
median time to connect two points in part A was 661.5 ms
(SD = 264.35 ms), while in part B it was 1008 ms (SD =
462.97 ms).

Data analysis

All data analysis was performed in R, using the same pack-
ages used in Study 1 (R Core Team, 2012; Rudis et al., 2016;
Torchiano, 2019). We examined differences in performance
by device group using linear mixed-effects models. Reaction
time on each trial was treated as a continuous dependent var-
iable and was scaled to have a mean of 0 and a standard
deviation of 1 for linear mixed-effects models, with results
reported in standard deviation units. Participant ID and trial
number were treated as random effects and device group, age
(including quadratic and cubic effect of age), gender, age-

Fig. 1 Distribution of test performance by device
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gender interaction, and educational background were treated
as fixed effects. Unlike in Study 1, we also included vocabu-
lary performance as a fixed effect covariate to control for
general cognitive ability, as this test is unlikely to be directly
affected by device differences. Differences in vocabulary per-
formance by device group were examined using a logistic
mixed-effects model; accuracy on each trial was treated as a
categorical (correct/incorrect) dependent variable, with partic-
ipant ID and trial number treated as random effects and device
group, age (including quadratic and cubic effect of age), gen-
der, age-gender interaction, and educational background treat-
ed as fixed effects. In addition to these mixed-effects models,
we also fit linear regression models for participant-level per-
formance (median reaction time and vocabulary accuracy)
with age, gender, educational background, and vocabulary
performance as covariates; the effect size was computed based
on residuals from these models using Cohen’s d.

Outlying data were removed according to the same quality
control criteria used in Study 1. A total of 129 participants
(3.67%) had their simple reaction time data removed, while
93 participants (2.78%) had their digit symbol matching data
removed, and two participants (0.05%) had their vocabulary
data removed.

In this study, we also collected information on screen size
and input type (mouse/keyboard or touchscreen) for all de-
vices used by participants. Based on these data, we found that
13.68% of Windows devices were touchscreen-based tablets;
the remainder were laptop or desktop computers.

Power

Data collection continued until we had at least 100 partici-
pants using each of the five most common device types
(iPhone, Android phone or tablet, iPad, Macintosh laptop or

desktop computer, or Windows laptop or desktop computer).
Using a linear model to identify differences in performance
between device groups, this sample size would provide 80%
power to identify an effect size of f2 = 0.13 (α = 0.05).
Because some devices were more frequently used by partici-
pants, final group sizes ranged from 205 iPad users to 1623
Windows users; in addition, some participants did not com-
plete the entire battery, so device groups vary in size between
tests. Thus, our a priori power estimate should be considered a
conservative estimation of the effect sizes detectable based on
these data.

Results

Performance on timed tests after controlling for vocabulary

Consistent with findings from Study 1, mixed-effects linear
regression modeling found significant differences between
device groups (using Windows as a comparison group) after
controlling for age, gender, and vocabulary in simple reaction
time performance; reaction times on mobile devices were
slower than reaction times on Windows devices (Android:
β = 0.58, SE = 0.03, t = 19.12, p < 0.001; iPad: β = 0.31,
SE = 0.05, t = 6.74, p < 0.001; iPhone: β = 0.16, SE = 0.03,
t = 5.25, p < 0.001). There was no significant difference in
reaction times for Macintosh laptop and desktop computers
(β = 0.01, SE = 0.03, t = 0.27, p = 0.79). On the digit symbol
matching task, we found that reaction times on Android de-
vices were significantly slower than on Windows devices
(β = 0.06, SE = 0.02, t = 2.24, p = 0.03), while reaction times
on iPad devices were significantly faster (β = −0.10, SE =
0.04, t = −2.61, p = 0.01); other device groups did not show
significant differences relative to Windows comparison group
(iPhone: β = 0.02, SE = 0.03, t = 0.71, p = 0.48; Macintosh:

Table 5 Study 2 participant characteristics and analysis sample sizes

Variable [range] Analysis N n (%) M (SD)

Age [18–80] 3818 35.44 (15.96)

Gender 3818

Male 1760 (46.10)

Female 1974 (51.70)

Non-binary/genderqueer 84 (2.20)

Education 2875

Primary school 8 (0.28)

Middle school 71 (2.51)

High school 441 (15.61)

Some college 711 (25.17)

Technical training/associate’s degree 206 (7.29)

Bachelor’s degree 782 (27.68)

Graduate school 656 (23.22)
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β = −0.01, SE = 0.02, t = −0.53, p = 0.60). Part A of the trail-
making task showed slower reaction times among users of
Android and iPhone devices, with no significant differences
for other device groups (Android: β = 0.18, SE = 0.02, t =
9.44, p < 0.001; iPad: β = −0.06, SE = 0.03, t = −1.92, p =
0.06; iPhone: β = 0.17, SE = 0.02, t = 8.40, p < 0.001;
Macintosh: β = 0.02, SE = 0.01, t = −1.29, p = 0.20); this
was also true of part B (Android: β = 0.16, SE = 0.03, t =
5.96, p < 0.001; iPad: β = −0.02, SE = 0.04, t = −0.64, p =
0.52; iPhone: β = 0.19, SE = 0.03, t = 7.06, p < 0.001;
Macintosh: β = −0.01, SE = 0.02, t = −0.32, p = 0.75). In gen-
eral, users of mobile devices showed slower responses than
users of laptop and desktop computers. Because vocabulary
scores were included as covariates in these models, this indi-
cates that differences in performance between device groups
are unlikely to be due solely to differences in general cognitive
ability between users of different devices, suggesting that dif-
ferences in device characteristics are contributing to differ-
ences in measured performance. As in Study 1, device-
related performance differences were larger for simple reac-
tion time than those observed for digit symbol matching. Both
trails A and trails B showedmoderate effects for use of mobile
phones compared to the Windows group (see Table 6).

Effects of screen size, input type, and browser on measured
test performance

While device latency is one factor that varies between digital
devices that can directly impact measured performance, other
differences between digital devices may contribute to differ-
ences in observed performance. In addition to the hardware
and software that contribute to differences in latency, digital
devices differ in screen size, user interface, and precision with
which one can select items on the screen. To examine the
effects of these mechanisms, in further analysis, rather than
classifying devices into categories based on hardware and OS,
we examined differences in participant performance based on
two device characteristics: screen size and input type. To de-
termine the effects of screen size, we compared age-, gender-,
and vocabulary-controlled performance of iPhone and iPad

users; these devices use the same operating system, are made
by the same company, and are both touchscreen-operated, but
vary in size. To examine the effects of input type, we com-
pared Macintosh laptop and desktop computers, which pri-
marily use mouse and keyboard input, and iPad tablets, which
primarily use touchscreen input; both devices are developed
by the same company and have relatively large screens. By
classifying devices based on specific characteristics, we can
determine which differences between devices contribute most
to differences in observed participant performance by observ-
ing whether one classification criterion shows greater effects
for a particular test.

Using mixed-effects models controlling for age, gender,
and educational attainment, with session ID and trial number
included as random effects, we found a significant effect of
screen size (comparing iPad and iPhone devices, with iPad as
the comparison group) on the digit symbol matching test (β =
0.16, SE = 0.005, t = 3.34, p < 0.001) and parts A and B of the
trail-making test (part A: β = 0.18, SE = 0.04, t = 4.00,
p < 0.001; part B: β = 0.15, SE = 0.07, t = 2.17, p = 0.031);
reaction times were slower on iPhones compared to iPads.
There was no significant effect of screen size on performance
on vocabulary (β = −0.05, SE = 0.12, z = −0.40, p = 0.69) or
simple reaction time (β = −0.06, SE = 0.06, t = −1.11, p =
0.27). The effect of screen size on test performance was
greatest on the trail-making tasks, with iPhone users showing
slower performance than iPad users. This is consistent with
our expectations based on the nature of these tests. Because
these tasks require participants to connect targets without ac-
cidentally crossing over non-target points, clustering the
points on a small screen makes it easier to unintentionally
hit an incorrect point due to lack of precision, making the test
more difficult. The small screen could also make it difficult to
correctly identify the points to be connected. Effects on per-
formance on other tests, both timed and untimed, were small
or negligible. For effect sizes of screen size on all tests, see
Table 7.

We also found a significant effect of input type (mouse vs.
touchscreen) on test performance (comparing iPad and
Macintosh devices, with iPad as the comparison group) on

Table 6 Age-, gender-, and vocabulary-controlled differences in performance by device (mean standard residual)

Effect size of device differences on age-, gender-, and vocabulary-controlled residualized participant performance (Cohen’s d, Windows device as
comparison group)

Device* Simple RT DSM RT Trails A Trails B

Android 1.10 (0.99, 1.22) 0.18 (0.07, 0.29) 0.50 (0.32, 0.67) 0.63 (0.46, 0.81)

iPhone 0.38 (0.27, 0.49) 0.09 (−0.02, 0.21) 0.45 (0.28, 0.63) 0.64 (0.46, 0.82)

iPad 0.70 (0.53, 0.86) −0.14 (−0.30, −0.02) −0.76 (−1.01, −0.51) −0.09 (−0.34., 0.15)
Macintosh 0.05 (−0.04, 0.15) −0.01 (−0.10, 0.09) 0.03 (−0.10, 0.15) −0.01 (−0.13, 0.11)

*Android devices include both mobile phones and tablets; Windows devices include tablet, laptop, and desktop computers
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simple reaction time (β = −0.36, SE = 0.05, df = 701.98, t =
−7.67, p < 0.001) and vocabulary (β = 0.26, SE = 0.11, z =
2.39, p = 0.02). There was no significant difference between
these groups on digit symbol matching (β = 0.05, SE = 0.04,
df = 741.7, t = 1.13, p = 0.26), trails A (β = 0.01, SE = 0.03,
df = 472.0, t = 0.38, p = 0.71), or trails B (β = 0.01, SE = 0.04,
df = 472.0, t = 0.37, p = 0.71). The effect of input method on
simple reaction time performance was moderate, with users of
mouse-operated devices showing faster performance than
users of touchscreen devices. Users of iPad devices showed
lower accuracy on the vocabulary assessment than users of
Macintosh devices, though this effect was small. No other
tests showed significant effects of input type. Input type is
closely related to device latency; touchscreens typically have
latency between 50 and 200 ms, while mouse input has a
measured latency of approximately 20 ms (Henze et al.,
2016; Pavlovych & Gutwin, 2012). Thus, the greater effect
of input type (relative to screen size) on performance in simple
reaction time suggests that the slower performance seen in
users of smartphones is likely due to latency, rather than to
screen size or other characteristics of the device. However, the
significant effect on vocabulary performance suggests that
there may be other participant-level differences between the
device groups chosen that were not addressed by controlling
for age, gender, and educational attainment.

To examine effects of browser differences on test perfor-
mance, we compared performance between users of Safari,
Google Chrome, and Firefox browsers, the three most com-
monly used browser types in our sample (using only data from
participants using the main laptop/desktop-based versions of
these browsers, rather than mobile versions). Controlling for
age, gender, educational attainment, and vocabulary perfor-
mance, linear mixed-effects models (using Safari as the com-
parison group) did not show any significant differences be-
tween browser groups on simple reaction time (Chrome: β =
0.07, SE = 0.04, t = 1.86, p = 0.06; Firefox: β = 0.01, SE =
0.05, t = 0.20, p = 0.84), digit symbol matching (Chrome:
β = 0.03, SE = 0.03, t = 0.92, p = 0.36; Firefox: β = 0.01,
SE = 0.04, t = 0.30, p = 0.77), trails A (Chrome: β = 0.03,
SE = 0.02, t = 1.76, p = 0.08; Firefox: β = 0.04, SE = 0.02,
t = 1.96, p = 0.05), or trails B (Chrome: β = 0.01, SE = 0.02,
t = 0.63, p = 0.53; Firefox: β = 0.02, SE = 0.03, t = 0.82, p =
0.41). However, a mixed-effects logistic model showed a

significant relationship between browser use and vocabulary
accuracy, with use of Firefox devices associated with correct
responses (Chrome:β = −0.04, SE = 0.08, z = −0.44, p = 0.66;
Firefox: β = 0.23, SE = 0.11, z = 2.03, p = −0.04). The lack of
variation on timed tests suggests that browser differences do
not contribute significantly to differences in measured reac-
tion time. However, the slight difference between browser
groups’ vocabulary performance suggests that there may be
differences in participant characteristics between users of dif-
ferent browsers.

Discussion

In this manuscript, we looked at differences in cognitive test
performance by device type, with a focus on the measurement
of reaction times across different devices. We found three
potential sources of variability in cognitive test performance
related to device type. First, device ownership was related to
differences in demographic characteristics associated with dif-
ferences in reaction time. Second, device type was associated
with differences in performance on an untimed measure (vo-
cabulary), suggesting that cognitive differences between
groups exist beyond what can be explained by age, gender,
and education. Finally, after controlling for demographic char-
acteristics and general cognitive ability, differences in device
group were associated with differences in reaction time that
were associated with operating system, input type (touch vs.
mouse), and screen size. In general, measures that elicit
shorter reaction times were most affected by factors that influ-
ence response time latency (operating system, mouse) where-
as measures with larger, more complex stimuli and responses
(trails A/B) were most affected by screen size. Our results
suggest that differences in cognitive test performance between
device groups are due to both the effects of the devices them-
selves and differences in the traits of the users who choose
each device, beyond what can be explained by age, gender,
and education.

To determine possible mechanisms contributing to these
differences between device groups, we examined the effects
of screen size and device input type on measured test perfor-
mance. We found that the use of touchscreens had a stronger
association with simple reaction time, while screen size had a

Table 7 Relationship between device characteristics and performance (age-, gender-, education-, and vocabulary-controlled standard residuals)

Test Cohen’s d (95% CI) (iPad vs. iPhone) Cohen’s d (95% CI) (iPad vs. Mac OS)

Simple reaction time 0.36 (0.17, 0.54) 0.72 (0.54, 0.90)

Digit symbol matching −0.25 (−0.43, −0.07) −0.14 (−0.31, 0.03)
Trails A −0.80 (−1.09, −0.51) −0.84 (−1.09, 0.58)
Trails B −0.60 (−0.88, −0.31) −0.09 (−0.34, 0.16)
Vocabulary (age-, gender-, and education-controlled) −0.03 (−0.21, 0.15) −0.33 (−0.50, −0.16)
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stronger association with tests that require fine motor input
and clear perception of the full screen; however, a small but
significant association between use of non-touchscreen de-
vices and vocabulary suggests that there may be differences
between device user groups that go beyond age, gender, and
educational attainment. Android touchscreen devices showed
particularly strong associations with reaction time compared
to iOS touchscreens. These differences were significant, with
moderate to large effect sizes even after controlling for cogni-
tive performance (as measured by vocabulary) as well as de-
mographic variables.

The present study does have some important limitations.
Although we controlled for demographic factors and perfor-
mance on an untimed measure of cognitive ability, it is possi-
ble that there are other factors that differ between users of
different devices. We also did not examine all possible differ-
ences between devices; in particular, it is possible that the iPad
and iPhone devices differ in aspects other than screen size
despite their shared manufacturer, operating system, and input
type. Our analysis of the effects of screen size based on these
device groups could thus be influenced by other factors. In
addition, because digital devices are constantly changing with
the introduction of new hardware and software, the specific
differences in measured reaction time associated with each
device may not be directly applicable to future versions of
these devices. The change in digital devices over time may
also introduce some heterogeneity into our device categories
in study 1; because the data for that study were collected over
a period of 5 years, it is possible that hardware and software
changes over this period affected the effects of device charac-
teristics on measured reaction time. However, the methods
used here to determine the effects of device variability from
the devices most commonly used in our sample could be ap-
plied to other devices used for cognitive testing. This study
also did not measure differences in participants’ internet con-
nection speed; because all images in all tests used in this study
are preloaded before the test begins, connection speed would
not be expected to affect performance in this study, but this
could be a factor in other web-based cognitive tests. Finally,
our analysis of differences between major device types is de-
pendent on the accurate recording and parsing of user agent
strings; these strings are typically an accurate representation of
the device being used to access a web page, but in a minority
of cases they can provide inaccurate information on the de-
vice’s characteristics (Kline et al., 2017).

Despite the widespread use of online cognitive testing tools
in psychology research, this is the first study to directly exam-
ine the new sources of variability that mobile- and web-based
research introduce in large samples of participants using a
bring-your-own-device model (Germine et al., 2019).
Previous research has examined the effects of device latency
in cognitive testing and found significant device effects on the
measurement of reaction times (Damian, 2010; Pronk et al.,

2019). Our study expands on these findings by measuring the
contribution of device variability to the measurement of reac-
tion time in a naturalistic setting that draws on the full range of
commercially available digital devices. Our online testing
platform enabled us to recruit a large and demographically
diverse sample of participants, which allowed us to examine
the contribution of demographic factors to device group dif-
ferences. The use of data from participants completing tests on
their own devices, in a naturalistic setting, allowed us to go
beyond existing measures of device variability, which typical-
ly focus on one aspect of a digital device, such as user inter-
face or latency. While device differences introduce new
sources of variability into cognitive testing, this variability
can be measured and quantified, unlike many sources of var-
iability in in-person testing such as measurement error and
tester bias. If the variability introduced by these new tools is
measured and appropriately mitigated, it could ultimately lead
to greater precision in cognition research.

Mitigating the effects of device variability

While some of the effects of device variability can be mitigated
simply by including device characteristics as covariates in anal-
ysis of data collected through web- and mobile-based assess-
ments, there are also ways to further reduce this variance through
study design. Users of smartphones typically showed the slowest
reaction times on time-based tasks, indicating that these devices
may produce artificially longer reaction times. Mobile phones
can also cause problems on some tasks due to the small size of
their screens and the difficulty of precise input. Thus, if it is
important for the purposes of a study that reaction times be mea-
sured with minimal latency, one could choose not to make the
test compatible with mobile phones and touchscreen devices and
require participants to use a laptop or desktop computer.
However, since many people access the internet regularly
through their phones, this may result in lower participation.
Furthermore, some study designs, such as ecological momentary
assessment, require that participants be able to complete assess-
ments on portable devices. There is a trade-off between the ac-
curacy of reaction time-based assessments and the flexibilitywith
which these assessments can be performed.

When participants are using a wide variety of digital devices,
tests based on reaction time measurement may be less precise
than tests based on other outcome measures, such as accuracy or
biases in response. Although not all domains of cognitive func-
tion can be measured in this way, such measures avoid many of
the sources of unquantified variation introduced by device vari-
ability.When reaction times are necessary, oneway to reduce the
effects of device latency on measures of participant performance
is to choose tasks that produce longer response times. The effi-
cacy of this approach can be seen by comparing the effects of
device differences on performance in simple reaction time and
performance in digit symbol matching. There are significant
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relationships for both tasks, but the effect size of input type is
moderate to large for simple reaction time and relatively small for
digit symbol matching. While both the digit symbol matching
task and the simple reaction time task measure processing speed
and are scored based on measured reaction time, digit symbol
matching produces longer reaction times due to the additional
cognitive challenge of matching each number to the appropriate
image. Because the scale onwhich responses occur is greater, the
proportion of variability attributable to the person—and presum-
ably differences in processing speed rather than device effects—
is correspondingly greater. Therefore, by choosing tasks that
produce longer true response times, the proportion of observed
variation that is due to device latency can be reduced, even if the
latency itself remains the same.

Another way to mitigate the effects of device latency
is to measure reaction times in ways that keep latency as
consistent as possible, allowing reaction times to be more
easily accounted for. For example, in tasks with multiple
trials, one could measure reaction time as the time be-
tween when a response was registered for the previous
trial and when a response is registered for the current
trial. Since device latency is typically consistent within
a single device over a short period of time, one can
assume that the effect of device latency will be consis-
tent from trial to trial. Thus, the time between registered
responses is the same as the time between actual re-
sponses, even if all measurements are delayed by a con-
sistent length of time reflecting device latency. Using
this method of measurement, only the measured time
between the start of the task and the first response will
be altered by device latency; if one removes the first trial
from analysis, the remaining measurements would be un-
affected by latency. However, when tasks are presented
this way, the time used to redirect attention from one
trial to the next is included in the measured reaction
time, which may not be desirable for all tasks. This ap-
proach also does not reduce the impact of user interface
(separate from its relationship to latency) and screen size
on performance.

While the previous solutions can minimize the effects of dif-
ferences in device latency, different approaches are needed to
avoid bias introduced by differences in user interface and screen
size. In order to scale across devices of different sizes, stimuli
must be simple enough to be easily viewable on small screens at
the level of detail necessary to complete the task. Stimuli that are
visually distinct and memorable on a laptop or desktop device
may be difficult to differentiate on a mobile phone screen. The
means by which a participant provides a response—pressing a
key, clicking on a button, moving a cursor—must also be con-
sidered to ensure that differences between devices do not change
the difficulty of the task. For example, if response buttons are
placed close together (as in the trail-making tasks used in this
study), it may be difficult to reliably select only the correct one

when using a small touchscreen. The use of simple, scalable
stimuli could help mitigate these effects in future research.

Each of these approaches can reduce the impact of device-
related variability on measured performance on cognitive
tests. However, there is no single approach that is appropriate
for all forms of online research; each solution imposes some
limitations on the research methods that can be used and the
circumstances under which research can be conducted. When
conducting online research in cognition, researchers will need
to consider whether device variability could have a significant
impact on their results, and if so, which approach is most
appropriate to mitigate it. Whatever approach is chosen, sim-
ply measuring device characteristics in web- and mobile-
based assessment is vital in any research in which latency,
screen size, user interface, or other device characteristics could
affect performance; without this information, the research
methods made available by new technologies cannot be used
to their full potential.
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